
NeuroImage 125 (2016) 162–171

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Connectometry: A statistical approach harnessing the analytical potential
of the local connectome
Fang-Cheng Yeh a,⁎, David Badre b, Timothy Verstynen a,⁎
a Department of Psychology, Carnegie Mellon University, PA, USA
b Department of Cognitive, Linguistic and Psychological Sciences, Brown University, RI, USA
⁎ Corresponding authors at: Department of Psychology
of Computation, Carnegie Mellon University, Pittsburgh, P

E-mail addresses: frank.yeh@gmail.com (F.-C. Yeh), tim
(T. Verstynen).

http://dx.doi.org/10.1016/j.neuroimage.2015.10.053
1053-8119/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 August 2015
Accepted 19 October 2015
Available online 21 October 2015

Keywords:
Connectome
Connectometry
Diffusion MRI
Diffusion spectrum imaging
q-Space diffeomorphic reconstruction
Generalized q-sampling imaging
Quantitative anisotropy
Here we introduce the concept of the local connectome: the degree of connectivity between adjacent voxels
within a white matter fascicle defined by the density of the diffusing spins. While most human structural
connectomic analyses can be summarized as finding global connectivity patterns at either end of anatomical
pathways, the analysis of local connectomes, termed connectometry, tracks the local connectivity patterns
along the fiber pathways themselves in order to identify the subcomponents of the pathways that express signif-
icant associations with a study variable. This bottom-up analytical approach is made possible by reconstructing
diffusionMRI data into a common stereotaxic space that allows for associating local connectomes across subjects.
The substantial associations can then be tracked along the white matter pathways, and statistical inference is
obtained using permutation tests on the length of coherent associations and corrected for multiple comparisons.
Using two separate samples, with different acquisition parameters, we show how connectometry can capture
variability within core white matter pathways in a statistically efficient manner and extract meaningful variabil-
ity from white matter pathways, complements graph-theoretic connectomic measures, and is more sensitive
than region-of-interest approaches.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The human connectome refers to the map of connections between
distinct cortical regions (Akil et al., 2011; DeFelipe, 2010; Seung, 2011;
Turk-Browne, 2013), where connectivity is typically quantified using
functional (e.g., functional MRI, electrophysiological approaches)
(Biswal et al., 2010; Dolgin, 2010; Fornito et al., 2015; Honey et al.,
2009; Johansen-Berg et al., 2004) or structural measurements
(e.g., diffusion MRI) (Craddock et al., 2013; Hagmann et al., 2010b;
Pestilli et al., 2014; Wedeen et al., 2012). Diffusion MRI is currently
the most popular method for measuring the structural connectome in
humans. It allows formappingmacroscopic end-to-end connections be-
tween parcellated gray matter targets using a fiber tracking algorithm
(Sporns, 2013; Wedeen et al., 2012), and the streamline count of the
connections can be used as a measure of global connectivity in several
connectomic studies (Fig. 1a) (Bullmore and Sporns, 2009; Hagmann
et al., 2008, Hagmann et al., 2007, Hagmann et al., 2010b; Sporns,
2014a, b). These structural connectomic approaches have used connec-
tivity matrices to represent the graph structure of connectome, and
graph-theoretic measures were estimated from these matrices to
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study how topological patterns varied along experiment-relevant
dimensions. However, these “find-difference-in-track” approaches
heavily rely on diffusion MRI tractography to quantify end-to-end
connectivity. While diffusion MRI tractography has increased in popu-
larity over the last decade, several recent studies have identified critical
concerns with the reliability of end-to-end connectivity measurement
(Reveley et al., 2015; Thomas et al., 2014). Specifically, fiber tracking al-
gorithms have exhibited limited reliability near the graymatter targets,
thus putting into question the reliability of these “find-difference-in-
track” methods.

To bypass the limitations of end-to-end fiber tracking, we introduce
the concept of the local connectome: the degree of connectivity be-
tween adjacent voxels within a white matter fascicle defined by the
density of the diffusing spins (Fig. 1b). Since the entire connectome is
defined as the complete map of connections in the brain, knowing the
local orientation and integrity of the fiber bundles as they run through
the core of whitematter is just as important as knowingwhere a bundle
starts and stops. In this way the local connectome can be viewed as the
fundamental unit of the end-to-end structural connectome, and thus
analyzing the local connectomes along fiber bundlesmay serve as a sur-
rogate for the global end-to-end connectivity analysis. Themapping and
analysis of local connectomes, termed connectometry, adopted a “track-
difference” paradigm. Instead of mapping the entire end-to-end
connectome, connectometry tracks only the segment of fiber bundle
that exhibits significant association with the study variable. This is
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Fig. 1.Differences between the global connectome and local connectome. (a) Themapping of human connectome relies on cortical parcellation to define a set of common regions (nodes)
for calculating the connectivity measurements (edges). The connectivity can be measured by the number of the connecting tracks or their mean anisotropy value. The final form can be
expressed as a symmetric connectivity matrix. (b) The mapping of local connectome utilizes local fiber directions from a common atlas to sample the density of diffusing spins as the
connectivity measurement. Multiple measurements can be obtained along the fiber pathways to reveal the change of track compactness within a fiber bundle. The local connectome of
a subject can be represented by a row vector, whereas the local connectomes from a group of subjects can be compiled as a local connectome matrix..
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realized by reconstructing diffusion MRI data into a standard template
space to map a local connectome matrix from a group of subjects
(Fig. 2a). Study-relevant variables are then associated with this local
connectome matrix in order to identify local connectomes that express
significant associationswith the variable of interest (Fig. 2b). These local
connectomes are then tracked along the core pathway of a fiber bundle
using a fiber tracking algorithm and compared with a null distribution
of coherent associations using permutation statistics (Nichols and
Holmes, 2002) (Fig. 2c). Permutation testing allows for estimating and
correcting the false discovery rate (FDR) of Type-I error inflation due
to multiple comparisons. We show how different levels of FDR can be
devised to tune the sensitivity and specificity of connectometry for
exploratory purposes (high FDR) or confirmative purposes (low FDR).

We benchmarked the performance of connectometry by replicating
a well-established negative association between global white matter
integrity and physical obesity (Gianaros et al., 2013; Mueller et al.,
2011; Stanek et al., 2011; Verstynen et al., 2013, Verstynen et al.,
2012). This was done using two data sets acquired in different imaging
Fig. 2.Diagram of the connectometry pipeline. (a) The diffusion data of each subject are reconst
sampled by the local fiber directions from a common atlas to estimate the local connectome. T
(b) The local connectomematrix is then associated with study variables using relevant statistic
press positive or negative association with the study variable can be tracked along a common p
length histogram of these subcomponents is calculated, and the statistical inference can be obta
environments and using two different forms of high angular resolution
diffusionMRI. By comparing our results against traditional tractography
and region-of-interest approaches, we show how connectometry can
complement conventional end-to-end connectivity analyses and pro-
vide amore nuanced description of variability within core whitematter
pathways.

Methods

Diffusion MRI acquisitions

The first data sample consisting of a total of 60 subjects with no pre-
vious history of neurological or mental disorder were scanned on a
Siemen's Verio 3 T system in the Scientific Imaging & Brain Research
Center at Carnegie Mellon University (abbreviated as CMU hereafter)
using a 32-channel head coil. We collected a 50 min, 257-direction dif-
fusion spectrum imaging (DSI) scan using a twice-refocused spin-echo
EPI sequence and multiple q values (TR = 9916 ms, TE = 157 ms,
ructed in a common standard space, and the calculated spin distribution functions are then
he local connectome of a group of subjects can be compiled as a local connectome matrix.
al procedures (e.g., using a multiple regression model). (c) The local connectomes that ex-
athway to reveal the subcomponents of the fascicles that have significant associations. The
ined by comparing the findingswith a null distribution to estimate the false discovery rate.
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voxel size = 2.4 × 2.4 × 2.4 mm, FoV = 231 × 231 mm, b-max =
5000 s/mm2, 51 slices). Head-movement was minimized during the
image acquisition through padding supports and all subjects were
confirmed to have minimal head movement during the scan prior to
inclusion in the template. Another set of 20 subjects with no previous
history of neurological or mental disorder was scanned in a Siemens
3 T Tim Trio System at Brown University (abbreviated as BU hereafter).
A twice-refocused spin-echo sequence was used to acquire DSI with a
32-channel head coil. The total diffusion sampling direction was 257.
The spatial resolution was 2.4 mm isotropic. TR = 9900 ms, and TE =
157 ms. The maximum b-value was 7000 s/mm2.

The second data set was from the Human Connectome Project con-
sortium led by Washington University, University of Minnesota, and
Oxford University (abbreviated as the WU-Minn HCP). 488 of subjects
received diffusion MRI scans. The scan was acquired in a Siemens 3 T
Skyra scanner using a 2D spin-echo single-shot multiband EPI sequence
with a multi-band factor of 3 and monopolar gradient pulse
(Sotiropoulos et al., 2013). The spatial resolutionwas 1.25mm isotropic.
TR = 5500 ms, TE = 89.50 ms. The b-values were 1000, 2000, and
3000 s/mm2. The total number of diffusion sampling directions was
90, 90, and 90 for each of the shells in addition to 6 b0 images. The
total scanning time was approximately 55 min.

Connectometry

The diagram of the connectometry method is shown in Fig. 2. As
shown in this overview figure, the diffusion data of each subject are
reconstructed in a standard space using q-space diffeomorphic recon-
struction, and the density of diffusing spins is then sampled by the
local fiber directions from a common atlas to estimate the local
connectome and to construct a local connectome matrix (Fig. 2a).
Then the local connectome matrix is associated with study variables
using relevant statistical procedures (e.g., using a multiple regression
model) (Fig. 2b). The local connectomes that express positive or nega-
tive association with the study variable can be tracked along a common
pathway to reveal the subcomponents of the fascicles that have signifi-
cant associations. The length histogram of these subcomponents is
calculated, and the statistical inference can be obtained by comparing
the findings with a null distribution to estimate the false discovery
rate (Fig. 2c). Each step of the connectometry method is detailed in
the following sections.

Q-space diffeomorphic reconstruction

We reconstructed multiple sets of dMRI data into the Montreal
Neurological Institute (MNI) space using q-space diffeomorphic recon-
struction (Yeh and Tseng, 2011) (QSDR). QSDR satisfied the conserva-
tion of diffusion spins after non-linear spatial transformation and
could be applied to diffusion tensor imaging (DTI), DSI, or multishell
data (Yeh and Tseng, 2011) to calculate a spin distribution function
(SDF) (Yeh et al., 2010), Ψ(û), an orientation distribution function
defined as the density of diffusing spins that have a displacement
oriented at direction û during the diffusion time (Yeh and Tseng, 2011):

ψ ûð Þ ¼ Jφ
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where φ is a spatial mapping function that maps a template space coor-
dinates r to the subject's space. The mapping function was calculated
using a non-linear registration between subject anisotropy map and
the anisotropy map in the MNI space (Ashburner and Friston, 1999).
Jφ is the Jacobian matrix of the mapping function, whereas |Jφ| is the
Jacobian determinant. Wi(φ(r)) are the diffusion signals acquired at
φ(r). bi is the b-value, and ĝi is the direction of the diffusion sensitization
gradient. σ is the diffusion sampling ratio controlling the detection
range of the diffusing spins. D is the diffusivity of water, and Z0 is the
constant estimated by the diffusion signals of free water. 2 mm resolu-
tion was assigned as the output resolution of the QSDR reconstruction
for CMU and Brown University diffusion data, whereas the HCP data
were reconstructed to 1 mm resolution. The SDFs of 60 subjects from
CMU and 20 subjects from Brown University were averaged to create
the CMU/BU-80 multisite atlas. The SDFs of HCP data at WU-Minn
were averaged to construct the HCP-488 atlas. The SDF was sampled
at a total of 642 sampling directions defined by an 8-fold tessellated
icosahedron, and the local maxima (peaks) can be determined using
the neighboring relation of the sampling directions. The peak directions
on the averaged SDFs defined the local fiber directions thatwere used to
measure the local connectomes in each subject.

Local connectome matrix associated with study variables

For each voxel, the local fiber directions from a common diffusion
MRI atlas provided the principle directions to sample the magnitudes
of subject SDFs as the local connectome properties. The local
connectomes of subjects were estimated by the density of anisotropic
spins diffusing along the local fiber orientation (Fig. 3a):

ψ âð Þ−iso ψð Þ ð2Þ

where ψ is the SDF of the subject reconstructed by QSDR at a voxel, and
â is the local fiber direction provided by a common dMRI atlas, and
iso(ψ) is the isotropic diffusion of the SDF estimated by taking the min-
imum value of the SDF. The local connectomes of a subject were
stretched into a row vector, and the vectors from a group of subjects
were compiled into a single local connectome matrix (Fig. 3b). Each
row of thematrix represents the local connectome of a subject, whereas
each column corresponds to a common fiber direction from the atlas.
The calculated local connectome matrix had a dimension of n-by-m,
where n is the subject count and m is the total number of local
connectome values.

A total of 59 CMU subjects had recorded body mass index (BMI)
measures, and the local connectomes from these subjects were estimat-
ed using Eq. (2), where the local fiber directions were identified from
the CMU/BU 80 atlas. The local connectomes of these subjects were
compiled into a local connectomematrix, where each row of thematrix
represented the local connectome of a subject, and each column
corresponded to each local fiber direction in the CMU/BU 80 atlas. We
correlated the local connectome matrix with BMI, age, and sex using
the following regression model (Fig. 2b):

Y ¼ XB ð3Þ

where Y is an n-by-m local connectomematrix. n is the number of sub-
jects, andm is the total number of localfiber directions in the dMRI atlas.
X is an n-by-4 matrix, recording the BMI, age, and sex of each subject,
and additional column is an all 1 vector for intercept. B is a 4-by-m co-
efficient matrix. Since mN N n, B can be calculated by a simple ordinary
least square, (XTX)−1XTY, and the first column of B, denoted as β here-
after, is a vector of coefficients corresponding to BMI. Since the row
vectors of X and Y are independent to others, the empirical distribution
of B can be obtained by applying 5000 bootstrap resampling to the row
vectors of matrix X. Similarly, the null distribution of B can be obtained
by applying 5000 random permutations to the row vectors.

Local connectomes and their statistical inference

The core hypothesis in connectometry is that the associations be-
tween local connectomes and the study variables tend to propagate
along a common fiber pathway. This hypothesis can be tested by track-
ing local connectomes that express substantial association with BMI
into a “track”, and comparing the length of this track with that from a



Fig. 3. (a) Themagnitude of the spin distribution function at thefiber directions is used as the local connectomemeasurements. It is noteworthy thatmultiple fiber populations can coexist
locally within a voxel, and each fiber population, identified by its fiber direction, has its unique local connectome estimation. (b) Compilation of a local connectomematrix from a group of
subjects. The local connectomematrix provides an easyway to conduct statistical analysis on the local connectome. The local connectomes of each subject are arranged as a row vector in
thematrix, and the vectors of a group of subjects can be compiled as amatrix. Since the rows are independent to each other, a distribution of this local connectomematrix can be generated
by applying bootstrapping to the row vectors. Similarly, a null distribution can also be generated by randomly permuting the row vectors.
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null distribution (Fig. 4). The positive and negative associations
were studied separately. To study negative associations, the local
connectomes with coefficients of less than a predefined negative
threshold were filtered in, whereas for positive associations, the local
connectomes with a coefficient value greater than a predefined thresh-
old were filtered in. The predefined thresholds were automatically
determined using Otsu's threshold (Otsu, 1979). This association proce-
dure identified local connectomes with substantial associations
(colored sticks in Fig. 4), which may include true positive findings
(red sticks) and false positive findings (blue sticks). The true positive
findings (red sticks) could only be observed from the non-permuted
local connectome matrix (lower row in Fig. 4), whereas the false posi-
tive findings could be observed from both non-permuted and permuted
Fig. 4. Random permutation used to obtain the null distribution of the connectometry findings
row), and the local connectomes that express associations can be visualized. The true findings
(blue sticks) are randomly distributed. The null distribution of thefindings can be obtained by ap
local connectomematrix is also regressed with the study variables to access the null distributio
acterized by fragmented, short-ranged, tracks. By contrast, the true findings can be differentiat
length. Wemay view tracks with lengths greater than a threshold as true findings, and the false
in the histogram.
matrices. This allowed us to model the null distribution by randomly
permuting the local connectome matrix (upper row in Fig. 4). Using a
tracking algorithm (Yeh et al., 2013b), we placed a total of 10 seeds
per local connectome within its belonging voxel to start tracking. This
tracking procedure was conducted for a set of 5000 local connectome
matrices (without permutation) obtained from bootstrapping resam-
pling and another null set of 5000 local connectome matrices obtained
from random permutation. We formulated the null hypothesis for
each track as: the length of a track connected along substantial coeffi-
cients in the non-permuted condition is not longer than that from the
permuted condition. Since multiple tracks were connected throughout
the brain space, we used false discovery rate to reject the null hypothe-
ses and identified tracks with significant FDR. The length histograms of
. The non-permuted local connectome matrix is regressed with the study variables (lower
(red sticks) tend to propagate along a common fiber pathway, whereas the false findings
plying randompermutation to the local connectomematrix (upper row). The permutated
n of the false findings (blue tracks). The tracks connected from false findings can be char-
ed by its longer trajectories. Their difference can be quantified using a histogram of track
discovery rate can be calculated by the ratio of the area under the two distribution curves



Fig. 5. The local connectome matrix of 59 subjects visualized. A local connectome matrix has a dimension of n-by-m, where n is the number of subjects, and m is the number of local
connectome, around 80,000 at 2-mm resolution and 900,000 at 1-mm resolution. The figure shows the matrix divided in multiple rows to facilitate visualization.
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the tracks were calculated, and the false discovery rate (FDR) of the
tracks in non-permuted condition were calculated by the ratio of the
area under the histogram curve.

In CMU 59 subjects' data, the FDR was controlled at 0.10, 0.075, and
0.05 to examine the results at different sensitivity/specificity levels. The
same analysis was repeated on 488 subjects (all had BMI information)
from the WU-Minn HCP Consortium to examine whether we could
obtain consistent results from two independently acquired data sets.

Comparison with connectivity matrix

The 59 CMU subjects with BMI data were reconstructed using
generalized q-sampling imaging (Yeh et al., 2010) with a length
Fig. 6. The result of connectometry examined by a randomized permutation test. (a) The red sti
high bodymass index. The spatial distribution of these local connectomes follows the hypothes
agate along common fiber pathways. (b) A fiber tracking algorithm can be used to connect thes
ciations. (c) The connectometry results can be statistically tested by a permutation test. The
associated with body mass index (BMI). Local connectomes that express negative associations
connectomes can then be connected into “tracks” using a tracking algorithm to reveal the subc
dition identifies several fiber pathways associated with BMI, whereas permuted local connecto
differentiate true and false findings. The false discovery rate can be calculated by the ratio of tra
CMU, the length histogram of tracks that express negative associations (non-permuted) is comp
curves suggests that there are trackswith a substantial decrease of local connectome due to BMI
applied to study positive association with BMI. The length histogram shows substantial similar
ations between local connectome and BMI are no different from random effect. (e) In the 488
associations (non-permuted) is comparedwith the null distribution (permuted). There is a larg
sociation with BMI. The positive associations between local connectome and BMI are no differ
ratio of 1.25. A total of 100,000 whole brain tracks were obtained
using a fiber tracking algorithm (Yeh et al., 2013b). The default an-
isotropy threshold and step size (determined automatically in DSI
Studio) were used. The angular threshold was 60°. The cortical
parcellation was conducted by warping the subject space to a stan-
dard space using non-linear registration (Ashburner and Friston,
1999). The cortex was partitioned using the Automated Anatomical
Labeling (AAL) atlas. A connectivity matrix was calculated for each
subject, and the entry of the matrix was the mean quantitative an-
isotropy (QA) values of the corresponding tracks. The connectivity
matrices of 59 subjects were regressed with their BMI, sex, and age
using a linear regressionmodel. The BMI-related coefficients and un-
corrected p-value can be calculated for each matrix entry using a
cks show local connectomeswith substantial decrease of local connectome associatedwith
is that associations between local connectome patterns and study-relevant variables prop-
e local connectomes into tracks to reveal the subcomponent of fascicles that express asso-
permuted (upper row) and non-permuted (lower row) local connectome matrices are
with BMI are shown by colored sticks (blue: permuted red: non-permuted). These local

omponents of the fiber pathways that have negative associations. The non-permuted con-
me matrix generates fragments of pathways. A simple length threshold can be applied to
ck count between non-permuted and permuted condition. (d) In 59-subject data set from
aredwith the null distribution (permuted). The large discrepancy between two histogram
. The area ratio under two curves is false discovery rate of thefindings. The same analysis is
ity between permuted and non-permuted conditions, suggesting that the positive associ-
-subject data set from WU-Min HCP, the length histogram of tracks that express negative
e discrepancy between permuted and non-permuted conditions, suggesting a negative as-
ent from random effects.
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linear regression model. The false discovery rate of the uncorrected
p-values was calculated using MATLAB (MathWorks, Inc.).

Comparison with tractography analysis

We chose the inferior longitudinal fasciculus (ILF) as the analysis
targets because it showed significant associations with BMI in the
connectometry analysis. The ILF was tracked on the CMU-BU 80 atlas
using the same fiber tracking algorithm (Yeh et al., 2013b), and the
QA values (Yeh et al., 2010) along the ILF were correlated with BMI,
age, and sex using a linear regressionmodel. The T-score corresponding
to BMI were rendered on ILF to examinewhether correlation was local-
ized. To test whether the connectivity at ILF was correlated with BMI,
the QA values at ILF were averaged for each subject and correlated
with BMI, age, and sex using a linear regression model. The scatter
plot of average QA values against BMI was generated for comparison,
and the p-value of the BMI association was calculated using the regres-
sion model.
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Data analysis

The source code for connectometry described in this work is publicly
available at https://github.com/frankyeh/DSI-Studio, and the atlases
described in this paper can be downloaded from http://dsi-studio.
labsolver.org. The data analysis was conducted on a personal laptop
equipped with a 4.0 GHz quad-core CPU and 32 GB memory. A total
of 8 threads were used in computation. The CMU data (59 subjects,
2-mm resolution) used a total of 1 gigabytes of memory, and the
computation time was around 3 min, whereas the HCP data (488 sub-
jects, 1-mm resolution) used a total of 18 GBmemory, the computation
time was around 3 h.

Results

Local connectome associations

In order to illustrate the analytical potential of local connectomes,
we first show how study-relevant patterns can be identified along
local white matter fascicles in the CMU sample and follow up with a
replication of these findings in the HCP sample. The local connectome
matrix from the CMU sample is shown in Fig. 5. This illustrates the
large number of features (columns) relative to the number of samples
(rows). Local connectome values from the CMU subjects were then
regressed against BMI, sex, and age using linear regression. Consistent
with previous findings (Gianaros et al., 2013; Mueller et al., 2011;
Stanek et al., 2011; Verstynen et al., 2013, Verstynen et al., 2012), we
found many local connectomes that expressed a negative association
(i.e., decreased in local connectome as BMI increased) (Fig. 6a). These
local connectomes, termed negatively associated local connectomes,
appear to be distributed coherently along fiber bundles, supporting
the core hypothesis that patterns of variability tend to propagate
along a common fiber pathway. The negatively associated local
connectomes were then tracked using a fiber tracking algorithm, and
the tracking was restricted only to local connectome with substantial
associations determined by the Otsu's threshold, so as to reveal the sub-
components of fascicles that have negative associations with BMI
(Fig. 6b). The negative BMI associations are broadly distributed across
white matter pathways in a largely bilateral pattern. This result is con-
sistent with a previous study showing BMI's heterogeneous association
to white matter pathways across the brain (see Verstynen et al., 2013).

After identifying study-relevant associations, our next task was to
assess the statistical significance of these associations and to correct
for multiple comparisons. To do this we applied random permutations
to the row vectors of the local connectome matrix and recalculated its
association with BMI in order to visualize the null distribution of the
negatively associated local connectomes. As shown in the upper row
of Fig. 6c, these “null” local connectomes tend to be randomly distribut-
ed within white matter, and tracks connected from them are short-
distanced fragments that suggest poor continuity along the core fiber
pathways. This is substantially different from the non-permuted condi-
tion (lower row of Fig. 6c), where the negatively associated local
connectomes produce longer tracks. By repeating the random permuta-
tions 5000 times we can obtain a null distribution of track lengths if
associations to BMI were determined by chance. The true findings and
falsefindings can then be differentiated using a simple length threshold,
and the false discovery rate (FDR) can be directly calculated from the
length histogram obtained from permuted and non-permuted condi-
tions. These length histograms allows for identifying the length thresh-
old that yields tracks with significant association (FDR b 0.05).

To illustrate this, we calculated the length histograms for both posi-
tive and negative local connectome associations with BMI using the
CMU data set (Fig. 6d). The length histograms of negative associations
(local connectomes decrease as BMI increases) show substantial differ-
ences between the permuted and non-permuted distributions. Lengths
longer than 52, 42, and 31 mm correspond to FDRs of 0.05, 0.075, and
0.10, respectively. By contrast, the length histograms of positive associ-
ations (local connectomes increase as BMI increases) show substantial
overlap between permuted and non-permuted distributions, suggest-
ing that the positive association between local connectome and BMI
cannot be distinguished from random chance. We applied the same
connectometry analysis for BMI-associations in the 488 subjects in the
HCP sample. As with the CMU sample, the negative associations with
BMI were more frequent in the HCP sample than the positive associa-
tions. For the negatively associated local connectomes, lengths longer
than 14 mm correspond to an FDR of 0.05 (Fig. 6e), showing that a
large sample and a higher spatial resolution may increase the statistical
power of connectometry to detect finer structural associations.

Since statistical power varies with sample size, the FDR threshold
can be used to adjust the sensitivity and specificity of the
connectometry analysis when working with lower powered data.
Using the CMU data set as an example, a high FDR affords better sensi-
tivity for exploratory analysis, but it also increases false positive rates
(e.g. FDR b 0.1 in Fig. 7a). A lower FDR offers a more specific result for
confirmation of the change in white matter structure; however, the
results may miss minor branches and has false negative results (e.g.
FDR b 0.05 in Fig. 7a). Thus, the FDR adjustment offers the flexibility
for different research purposes (e.g. exploratory or confirmative) by ei-
ther controlling to a predefined threshold (e.g., 0.05) or using a
predefined length threshold (e.g., N40 mm) and returning the FDR at
that threshold. The FDR values can be affected by the image quality
and the number of subjects included in the analysis. Using the HCP
data set as an example, we show that with a larger subject pool and a
higher spatial resolution, we may capture the associations in short-
ranged connections as FDR b 0.05 corresponds to lengths longer than
14 mm (Fig. 7b).

Comparison with conventional diffusion MRI analyses

To illustrate how connectometrymay complement conventional ap-
proaches, we applied variants of conventional end-to-end connectivity
at gray matter targets (Hagmann et al., 2008, 2010a, 2010b). The con-
nectivity matrices of the CMU subjects were created using Automated
Anatomical Labeling (AAL) atlas for cortical parcellation and the mean
quantitative anisotropic (QA) value along the connecting trajectories
as the matrix entry. The connectivity matrices were regressed against
BMI, age, and sex using linear regression to produce a new matrix of
pairwise BMI-associations. Although the BMI-related coefficient matrix
in Fig. 8a shows no obvious correlation trend pattern between BMI and
the connectivity, the matrix has 79.52% of its non-zero entries being
negative, suggesting an overall negative correlation between BMI and
QA that is consistent with our connectometry results. The uncorrected
p-value map (Fig. 8b), in general, shows a greater significance level at
the intra-hemispheric connections (near the diagonal elements). How-
ever, the FDR of the most significant p-values is 0.1817, and an alpha
threshold of 0.05 will yield no significant pairwise associations in the
entire matrix, meaning that typical adjustments for multiple
comparisons would wipe out any BMI associations on end-to-end
connectivity. Nonetheless, the fact that BMI associates with individual
pairwise connections suggests that topological properties of the matrix
(e.g., associativity, centrality) also vary with BMI. This pattern of
end-to-end connectivity variation is consistent with the distributed
pathways identified in the connectometry analysis, suggesting that
connectometry provides complementary details about which sub-
components of connections within the fascicle are significantly asso-
ciated with BMI.

We also compared our connectometry results to typical
tractography-based region of interest analysis. The inferior longitudinal
fasciculus (ILF) was mapped using the CMU/BU 80 atlas, and the mean
QA values along ILF were regressed with BMI, age, and sex. The
ILF was chosen for illustrative purposes only due to its significant nega-
tive BMI associations in the connectometry analysis. The BMI-associated

https://github.com/frankyeh/DSI-tudio
http://dsi-tudio.labsolver.org
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Fig. 7. Impact of FDR threshold and sample size on connectometry results. (a) The subjects from the CMU data set are analyzed by connectometry to reveal the subcomponents of fascicles
that express negative associationswith BMI. The false discovery rate (FDR) can be controlled to change the sensitivity and specificity of thefindings. High FDR leads tomore specific results
but may miss true findings, while low FDR is more sensitive but may include false positive findings. (b) The HCP sample was analyzed by connectometry to reveal the subcomponents of
fascicles that express negative associations with BMI. Inclusion of more study subjects allow for revealing smaller branches of fascicles that achieve significant associations.
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t-statistics are rendered to the track bundle (Fig. 8c) in order to illustrate
the degree of associations along the entire pathway. The anterior region
of the ILF shows the strongest negative association with BMI, whereas
the posterior segment shows weaker associations. This suggests that,
within the region of interest, the magnitude of BMI associations varies
substantially, making averaging across the ROI a conservative estimate
of BMI–white matter associations. This is captured in the scatter plot
in Fig. 8d, showing a negative association between BMI and the mean
QA sampled across the entire ILF. As expected the relationship between
BMI and mean QA is strong but not statistically significant (p = 0.06).
Thus, in this case, region-of-interest analysis is not sensitive enough to
reveal the focal effect of BMI because it collapses across the entire fasci-
cle and fails to consider regional variation in BMI associationswithin the
pathway, whereas connectometry naturally isolates only the affected
segment of the fascicle, thus achieving greater statistical sensitivity.

Discussion

Here we illustrate the analytical advantage of using the local
connectome to identify white matter fascicles that express significant
Fig. 8. Conventional connectome analysis applied to study BMI effect on white matter tracks. (a
gesting an overall trend of negative correlation between BMI and the connectivity. (b) The unc
icance level. (c) The t-statistics of BMI-related coefficients rendered on inferior longitudinal fasc
a subcomponent of the entire fiber pathways. This suggests that the local connectome is amore
themean anisotropy values of the fiber pathways against BMI. A linear regressionmodel includ
BMI. The correlation is not significant (p-value = 0.06). This demonstrates that tractography-b
fiber pathway.
study-related patterns of variability. While conventional connectome
analyses are designed to find differences in whole fiber pathways,
connectometry tracks the differences along the pathways themselves.
Using data from two independent samples of subjects, scanned using
different diffusionMRI approaches, wewere able to identify subcompo-
nents of many major white matter pathways associated with BMI. This
also suggested that we can track statistically meaningful associations
to identify subcomponents of white matter pathways associated with
a particular variable of interest.We also showhow the spatial specificity
of connectometry can complement conventional end-to-end structural
connectivity approaches (Hagmann et al., 2008; Rubinov and Sporns,
2010; Sporns et al., 2005). While the full connectivity matrix estimated
from diffusion MRI tractography between gray matter targets catches
large-scale associations at a network level, connectometry characterizes
focal structural differences within the connected pathways that may
drive any observed changes in connectivity. On the other hand,
connectometry can be viewed as an alternative to conventional
tractography-based region-of-interest analyses that aim to identify
tracks first and then conduct analysis of anisotropy and diffusivity asso-
ciated within the identified trajectories (Abhinav et al., 2014b; Jbabdi
) The BMI-related coefficient matrix has 79.52% of its non-zero entries being negative, sug-
orrected p-value map shows that the intra-hemisphere connections have a greater signif-
iculus show a focal effect of BMI on the fiber pathways. The structural change involves only
suitablemeasurement to study the BMI effect on track integrity. (d) The scatter plot shows
ing age and sex is used to examine the correlation between themean anisotropy value and
ased analysis is not power enough if the structure change involves only a segment of the
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and Johansen-Berg, 2011). The tractography-based analysis produces a
more conservative estimate of white matter associations that some-
times inflates Type II error rates by averaging acrossmanywhitematter
voxels that may not have strong associations with the study variable of
interest. By contrast, connectometry does not map the connectome it-
self. It analyzes difference in local connectome, associates local
connectome with study variables, and then tracks the associations
across a pathway. It is able to capture focal structural patterns in a sub-
component of individual white matter fascicles, rather than the entire
pathway itself. This provides a measure that is highly sensitive to re-
gional variability in white matter and that can complement or inform
graph-based connectomic analyses on the end-to-end connections.

Most diffusion MRI connectomics are conducted in a native subject
space due to the methodological challenges in warping diffusion infor-
mation to the stereotaxic space (Hagmann et al., 2010a, Hagmann
et al., 2008, Hagmann et al., 2007, Hagmann et al., 2010b; Sporns
et al., 2005). Connectometry bridges this gap by using q-space
diffeomorphic reconstruction to reconstruct data directly in the stereo-
taxic space, allowing for integrating voxel-wise diffusion models
(e.g., SDFs) across subjects and data sets (e.g. different diffusion
schemes). This approach also allows for greater integration of structural
analyses with functional imaging data analyzed in MNI-space, even in
cases where fMRI data are collected on separate groups of subjects,
opening the door to studying generalized structure–function relation-
ships across studies.

Another advantage of connectometry is the atlas-based analysis in
a standardized stereotaxic space. While atlas-based analysis has been
the norm in fMRI for nearly two decades, there are only few studies
using an atlas to analyze diffusion MRI measurements. Tract-based
spatial statistics (TBSS) (Smith et al., 2006) uses a “skeleton” to analyze
fractional anisotropy (FA), a diffusion index derived from a tensor
model. The FA measure has been shown to reflect components of fiber
integrity (Huisman et al., 2004; Werring et al., 2000), but studies have
also shown that FA is susceptible to the partial volume of crossing fibers
(Alexander et al., 2001, Alexander et al., 2002; Oouchi et al., 2007; Tuch
et al., 2002; Yendiki et al., 2013). Amore recent study used a fiber orien-
tation distribution (FOD) template to analyze streamline count at each
fiber direction (Raffelt et al., 2015), but whether stream count can be
reliably correlated with the underlying anatomy has been put under
question (Besseling et al., 2012; Jbabdi and Johansen-Berg, 2011; Jones
et al., 2013). In comparison, connectometry uses the density of diffusion
spins derived fromamodel free approach as the core diffusionmeasure-
ment to reveal the compactness of fiber bundles (Yeh and Tseng, 2011;
Yeh et al., 2013b). The density measurement is consistent across
different diffusion schemes (Yeh and Tseng, 2013; Yeh et al., 2010,
2011), thus allowing connectometry to be applied to a variety of acqui-
sition approaches, including conventional DTI, multi-shell diffusion
images, and DSI. This feature is critical for comparing results across
multiple studies and/or test sites. Connectometry also adopts a new
paradigm—tracking the difference—to investigate the association of
the diffusion measurement with a study variable. This paradigm is
different from the conventional paradigm that seeks to map cortical
connections (i.e. end-to-end connections) first and then study their as-
sociations. Mapping end-to-end connections has been a challenge due
to methodological limitations (Jones et al., 2013; Reveley et al., 2015;
Thomas et al., 2014), and a reliable and reproducible approach is still
under active research. Connectometry bypasses this limitation by first
quantifying the local associations and tracking only a subcomponent
of the fiber pathway that expresses substantial association. The length
of the affected subcomponent is used as the statistical index to help dif-
ferentiate true findings from false findings caused by misalignment.
Connectometry is also highly extensible tomost regression frameworks
due to the independent and identically distributed (i.i.d.) feature of
the local connectome matrix. The ordinary least squares regression
model used here can be replaced by sparse or non-linear regression ap-
proaches for more precise results. Also, non-regression metrics such as
group mean difference, paired difference, or percentile rank test can
also be used to estimate the first state associations (Fig. 2b). Using
different models, connectometry can examine associations between
two groups of subjects, or to examine the change before and after a
treatment, or to compare the connectivity differences between an indi-
vidual with a normal population. Having a well characterized distribu-
tion of healthy normal variability in the normal local connectome
could allow connectometry to be used to identify the white matter
areaswithpathological differences in clinical patientswith neurological,
psychological, and psychiatric disorders, providing a quantifiable and
potential biomarker for white matter pathologies.While the initial con-
cept of connectometry was proposed as a way of identifying pathologi-
cal damage by comparing individuals with neurological damage to a
normal population (Abhinav et al., 2014a, Abhinav et al., 2014b; Yeh
et al., 2013a), here we extend the approach to include a regression
model as a more general framework for group-wise, atlas-based com-
parison. This enables us to study the effect of BMIwhile also considering
age and sex as the confounding factors. The extension can be applied to
a large scale study that includes a complex set of demographic informa-
tion to study the association between brain structure and a study
variable.

In conclusion, we show how analyzing local connectomic patterns
can be a powerful method for investigating variability in macroscopic
white matter pathways. Connectometry can serve as a complementary
approach for conventional structural connectomics. In the future,
connectometry may further open the door to applying more sophisti-
cated statistical models, such as machine learning classifiers, to investi-
gate how brain structure associates with a study variable and highlights
a rich clinical potential connectometry as a classifier for clinical
pathologies.
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